SUPER FAMICOM DOCUMENTATION SFX01

SOFTWARE MANUAL

CONTENTS
1.SOFTWAREMANUAL
SI INTRODUCTION 2
2. SFX SCREEN
3. BLANK
§2 OBJ (OBJECT)1. OUTLINE2. FUNCTION3. SETTING E: AMPLE
§3 BG (BACKGROUND) 6

1. OUTLINE
2. FUNCTION
3. SETTING EXAMPLE
§4 MOSAIC 8
4. OUTLINE
5. FUNCTION
6. SETTING EXAMPLE
§5 ROTATION/ENLARGEMENT/REDUCTION. 9
7. OUTLINE
8. FUNCTION
9. SETTING EXAMPLE
§6 WINDOW WINDOW MASK) 11
10. OUTLINE
11. FUNCTION
12. SETTING EXAMPLE
§ 7 MAIN/SUB SCREEN 12
§7.1 SCREEN ADDITION/SUBTRACTION 13
13. OUTLINE
14. FUNCTJON
15. SETTING EXAMPLE
§7.2 COLOR CONSTANT•ADDITION/SUBTRACTION 15
16. OUTLINE
17. FUNCTION
18. SETTING EXAMPLE
§7.3 COLOR WINDOW 16
19. OUTLINE
20. FUNCTION
21. SETTING E®゚AMPLE
§8 CG DIRECT SELECT 17
22. OUTLINE
23. FUNCTION
24. SETTING EXAMPLE
§ $9 \quad H-P S E U D O$ 5 12 18
25. OUTLINE
26. FUNCTION
27. SETTING ENAMPLE
§ 10 COMPLEMENTARY MULTIPLICATION 19
28. OUTLINE
29. FUNCTION
30. SETTING EXAMPLE
§11 H/V COUNTER LATCH 20
31. OUTLINE
32. FUNCTION
33. SETTING EXAMPLE
§12 OFFSET CHANGE 21
34. OUTLINE
35. FUNCTION
36. SETTING EXAMPLE
§ 13 JOY CONTROLLER 22
37. OUTLINE
38. FUNCTION
39. SETTING EXAMPLE
§ 14 PROGRAMABLE I/O PORT 24
40. OUTLINE
41. HOW TO USE
§15 ABSOLUTE MULTIPLICATION/DIVIDE 25
42. OUTLINE
43. FUNCTION
44. SETTING EXAMPLE
$\S 16 \mathrm{H} / \mathrm{V}$ COUNT TIMER 26
45. OUTLINE
46. FUNCTION
47. SETTING EXAMPLE
§ 17 T DMA (DIRECT MEMORY ACCESS) 27
S17.1 GENERAL PURPOSE DMA 28
48. OUTLINE
49. FUNCTION
50. SETTING EXAMPLE
§17.2 H-DMA 30
51. OUTLINE2. FUNCTION3. SETTING EXAMPLE
§ 18 INTERLACE 32
52. BG MODE 0~4. \& 72. BG MODE 5 \& 6
53. OBJ
§19 $\mathrm{H}-512$ MODE (BG MODE 5. 6) 33
54. MAIN \& SUB SCREEN SETTINGS
55. FIXED COLOR ADDITION/SUBTRACTION
56. DISPLAY WITH OBJ
57. OTHERS
§20 OBJ 33^{*} © OVER \& PRIORITY ORDER 34
58. 33° s RANGE OVER
59. $33^{\prime \prime} \mathrm{S}$ TIME OVER
60. PRIORITY ORDER SHIFTING
§21. CPU CLOCK \& ADORESS MAP 36
61. CPU CLOCK
62. ADDRESS MAP
63. CPU SYSTEM CLK \& ADDRESS MAP
§22 HAROWARE CONFIGURATION 38
822.1 NAME \& FUNCTION
§ 23 SYSTEM FLOWCHART 40
§ 24 PROGRAMMING WARNINGS 43
§25 REGISTER CLEAR (INITIAL SETTINGS) 14

81 Infroouction

Thank you for your interest ln developing sof twarefor the Super famicon (SfX). We would like to explaln briefly the basic liformation concerning the home television system. Even lf you have beforigaged in developing software for the famlly Compuler (facicoos). please read once for your review.

1. PICTURE IMAGE ON TELEVISION SYSTEN

The picture on color television system consists of 525 holizontal lines witheach line harling the color siripes. The broadcasting station breakdowns the pleture into lines as shown on fic.l.
The odd number ilnes are converted to electric sifnal from the top to the botlow on the screen, and then. the remalning even number lines will be converted from the tod the bottom in the same way. The method wilch traces every iwo lines ls called the "iNTERLACE". for the television system. the electric signal wilch has been sent is converted to the light signal, and lt will traces on the tif screen according to the order above.
The light traces on the screen ls called the "scanifin. and the perlod for scanning the odd nuaber line is called the "lst field". and the period for scanilng the even nuaber line is calied tiae 2nd field". A period for scanilng on the screen is called one frame", and this is a period combined of the lst fieid and the and fleld in case of the TV broadcasting. Because of $1 / 60$ sec (one field) and $1 / 30$ sec (one (rame), certain portion on. the screen is radiated only every $1 / 30$ sec. However, because of the afterimage of human eyes and the aftergion of the CRT, it does not seem to filcker.

[fig. 1$]$ Scanning Process
2. SFX DISPLAY

The pleture display on the SfX has two modes. One ls the lateriace mode based on the teierision system. and the other is Non-lateriace wode which one frame takes $1 / 60$ second. In the Non-interlace mode. same postiton ls scanedevery fietd. therefore. lines of a frame are only 262. Which weans. half of the Interlace mode.

Furthermore there seems to be no fllckerlng compared to the lateriace aode. since one polnt on the screen radiates every $1 / 60$ second.
3. BLANK

The screen ls scaned from the left to the right and from the top to the boltom on the screen (See fis. 2). After scaning from the left to the risht. It sould move back to the left without radiating. and after scanalne from the top to the bottoa. ll should move back to the lop wilhout radialing.
It takes a certain amount of time for the scanalng. The former is called $H-B l a n k$. and the later is called V-biank. The famicom and the sfx use this elank efficientiy to display various moyement of the characters.

[Fig.2] SCANNING PATTERN FOR INTERLACE

82 OBS (OBIECT)

1. outline

This funclion can display the object on a certaln position on the screfa. The characters. such as the ufo or the wissile of 2 space game. look like they are actlye in moving this posillon.
If the character's pleture is replaced at the same lime the polat is Doved. anlaalion effects can occur. such as Mario character looking like li's making.
2. FUNCTION

The axylaum number of OBjs that can be displayed on the screen is 128 and there are four sizes. However. imo slzes can be selected in one frame and one slae should be selected for each OBJ.
There are 8 color paleltes in the whole oiss. and one palelte should be selected for each ofj. One color palette has 16 color codes oul of 32768 colors. therefore. each OBJ is the pleture drawn by 16 colors. Each 128 objs has its own priority order. Which will decide the display priorlity if 2 or aore objs are overiapped.
Furthernore. there is the fllp functlon of up-down, and left-risht.
BG priorlty order and the arlority order shlifing fuaclion.
3. SETTING EXAMPLE

CAUTION: : il is prohibited to write - $100 \mathrm{H}^{\circ}$ to the "OAM H-position (g-bit)". (See-PPU Appendix-4)

§3 BC (BCCCGROUND)

1. OUTLINE

The backeround for $O B J$, such as Mario, can be displayed on the screen, and $1 t$ can be scroiled to the up. the down. the lefland the rifht. and it helps for the same effect.
2. FUNCTION

There are ε kinds of $B G$ mode.
In BG ade-0 throush 6, there is difference dedending on the combination of the nuber of the screen. the numbers of the cell color. the resolulion and tlie offset function.
There are 4 screens provided, and the aumer of the cell colors are from 4 lo 256. There are 4 kinds of the resolution selected from 256-dot x 224-dot. 512-dot.x 224-dot. or 512-dol x 448-dol. The character sizecan be set as *-dol x 8-dol" or "16-dol x 16-dol" on each screen. The offset value (scroll coordinate) can be set on cach bicereen, and also. the offset value can be changed every horlzontal character untit depending on the mode. so that the verileal partial scroll can be made. 8 paleties can be used der character. and h-filid or Vfild is arallabie der characler. and also. the priorily order of BCand OBJ can be chanted per character. (See "ppu Appeadix-16") Node-t has screen. which can rolate, eniarge or reduce. There are other functions for BG. such as the mosac. the window. the fixed color addition/subtraction. Ihe screen addilion/subiraction. and the il-Pseudo 512.

3．SEtting example

〔＊】 In case of $B G$ NODE 5 or 6．＂Through Sub $B G^{*}$ of resister＜212DH〉 should also be set．（Refer to § \quad ）

84 HOSAIC

1. OUTLINE

This function ls to chanze bereen lo maic design and shade off a piciure. (See *PU Appeadix-6")
2. FUNCTION

A piciure eleatit of mosalc destra can be chaned to 15 sizes ind $B C$ screen lo be mosilc destin can be selected.
3. SETTIMG EXAMPLE

§ 5 ROTATION/EWLAREELENT/REDUCTION (B6 WODE-7)

1. OUTLINE

In the $B G$ mode-7, thls function can add to the bcereen more anlmation effects by rotation. cilareement or reductlon in addition to scroll functlon
2. FUNCTION

There are 250 characters numbers (8-dot 8 -dot slze). Each dol can be one of 256 colors froe a selection of $32,7 c 8$ colors. On EXTBG mode, each dot can be one of 128 colors from selection of 32.768 colors, and each dot can have prlorlity order.

This function ls posslble to scrollyp. down. left and right.
The center coordinate of rotatlon. enlargencint and reductlon can be sel at elther outside or linslde of the display area.
The rotatlon angle, verilcal magniflcatlon, and liorizontal agalficallon values are chaneable. Also. hollzontal fllpand verilcal fllp on the display area are possible.
In case the display area goes beyond the screen area. one of three cholces. Whlch are the back drop color, slagle character (CHR: 0) or repetellon (wrap) of the screen area, can be selected in order lo dlsplay the excess portlon.

EXTBG MODE : EXTBG mode is orlginally provided as a fuctlon for the purpose of the LSI 8Gexpand. For the SFX, It ls used as rotallon. entariement and reduction with prlorliy order. Also. It can be used as and screen on mode-7.
(See Paze 61)

3．SETTING SAMPLE

〔41】 On EXTBG mode．EXT．Input of register 〈2133H〉 needs to be set． ［12】 Normally．BGI should be sel．Bul BC2 should be scl on EXTBG mode．

\& 6 PIHOOR (IIHOOR HASK)

1. outline

This funcilon ligits the dispiay area on the TV screen for BC and OBJ.
The window can be sel on the $T V$ screen. and $B C$ and $O B d$ can be displayed inslde (or oulside) of this area
2. FUNCTION

There are 2 windows. Each window can be elther bcereen or obd. and can be ellher internal or external mask.
furtheraore, 4 types of window mask logic (OR. ANO XOR \& NOR) can be selected eich $B C$ and each ofj by uslag 2 kinds of the windors al the same llme. (See Page-57)
Noreover, If this function is combined with the functlon of H-DMA. varlous shapes of the mindow wlll be formed, such as a round shape. a hearl shape or a star shape.
It is also possible to use inis function conblined with the screen addilion/subiraction and the fixed color addilion.
3. SETTING EXAMPLE

87 VAIN / SUB SCRECE

 displayed in the overiapped portion is decided by iwo paths. One of then is called the mila screen. and the other is called the sub screen.
The screen to be used for the alia and the sub scren can be selected by registers <212CH〉 and 〈212DH) select.
Furthermore, the dala for the main and the sub screcn to be displayed is ade according to the priorliy order.
Unless screen the adilloa/sublractlog is done as follows. the main sw" of the color window in retister $\langle 2130 \mathrm{H}\rangle$ is normally on. and the "sub sw" is normaliy off so that oniy the main scren is displayed. (Sec Appendix-20)

87.1 SCreer hooltion/Sbbraction

1. OUTLINE

This fanction is the addition (Oyerizpolng light) or the subliaction (lensefilier) for the mata seren and the sub scen in order lo have the effect of transparency.
2. FUNCTION

This fuaction indicates the result after the addilion or the subtracilon of tics data on the maln screen and sub screan.
This funclion can silse select bgereen or obj data on the mala screan to be aded to or subiracied from the sub scren siallar lo the fig. below.
However. When there is go screen dati on the sub screen (screen is ciear.). the color constint explained on page 15 will be aded or sublracted.
When the resull added or sublracted on each RCB is orer 3i. the value becomes 31. also. whea the yalue added or sublracted on each RCB is under 0 . the value becoaes 0 .
Please do not use thls function on BG mode 5 or 6.

3. SETTING EXAMPLE

NOTE : When the gatn screen data is the osj. it will be added to or sutricied fron the sub screen detioniy for the obl of the palelle code (4 10 7). If Is convenient for cenerziling the dusky shadow.

NOTE : When " $1 / 2$ Enabic* of retister 《2l30H> is enabled, the addlilon/subiraction result of each RGB becomes $1 / 2$.

\$7.2 Color cousthet ADOITION/Subraction

1. OUTLINE

This function can performaddllon (overiapped llght) or subtraction (lense fllter) with the fici value (color constant) set by the man scren and reglster (2132H), and chane the color on the display area.
2. FUnCTION

This function can perfora adultionteutracilon by using the res value (color constan) which is sel by register <2l32ll> instead of the sub screen of the screen addilion/subiracilon described previously.
3. SETTING EXAMPLE

87.3 COLOR NiHOOT

(COMBINATION OF WINDOW \& ADDITION/SUBTRACTION)

1. OUTLINE

The Screen Addillon/Subiracilon or the Color Conslant Addilion /Subiracilon can be performed only inside (or ouiside) of the window.
2. FUNCTION

This is a funclion. which can select what portion of the window should be displayed and added or subtracted on each maln screen and sub screen.
The following is the funcilon as a window. the screen addilion /subiracilon and the color constant addilion/subiraction.
3. SETtING EXAMPLE

\& 8 Cf Hilect select

1. outline

On E-1 in aode S. 4 and 7 . Ihe character data can be used as the color dals wlithol walat ch-RAM color data. icticabe displayed vslas 2048 colors of ate 3 tad 4 . art 25 flixed colops on ode-7. ic-2 and oid can wie the cG-RAM color data withovi holdas in comooll Wlith the color dala on ic-1.
2. FUNCTIOK

When $16-1$ en aede 3. 4. and 7 is displayed on the TV screen, inls fuaction le to diaplay s-bll color dsia per character dol withoul usiar the CG-RAM. the cG-RAM ditz ls uset for the other ic. objand Bacheranal on mala zereen.
3. SETtING EXAMPLE

```
Easble BC lo display (See BC Insiruclloa)
- Set 80` of resisier (2130|>
    -Direct selec! Sellines
```

NOTE : SCe PPU'Appendix-14 for the color data.

§ 9 H-PSEVOO 512

1. outlike

In the mode other than 5 and 6 . this funclion suppleants between 2 dols next to each other herliontally. which changes the color saoolhiy. and has the effect of the eradition.
2. FUNCTIOK

This fyactlon llllizes screen adflllon/subiraclion.
The color constani addlifon/sublracllon can nol be done al the same the that inis inaction is performed.
3. SETtIMG EXAMPLE

- Enable sc io display (See 8 (instraction)
- Set - 03° of restster (2133H)
"Psevde 512" stllags
- Set regtster (212CH). (212DH)

Throsen Mala
Through sub Selllags

- Sel dl of reflster <2130h>
"CC ADO Enable" selllars
- Set resister <2131H>

ADD or sue Enable
M Enable
Sellins
ADO/SUB

1. OUTLINE

The 2 s complement oultiplicallon will be performed with hish speed. For example. to calculate the rotalion parameter on mode 7. It witt lighten the buden of the cpu processine.
2. FUNCTION

The hleh speed aullinllcatlon of to-bil (2's complement) and 8-bit (2° s compleatal) wlll be perforato with no-mall'. and the result becomes 24-bil (2's compleatil).
3. SETTING EXAMPLE

```
- Sel BG other than NODE-T (or V-Blank/forced Blank)
    (exceot during \(V-B / z a k\) or forced blank perlod)
- Write lower 8-Bil (Noillpilcand) lo retister <2llBh : (inpul)
```



```
- Write regisier 8-Bli (Myllipller) to reflster <2lichl : (lnput)
-Read refister <2134H>~〈2130H> : (Resull)
```


$\$ 11$ IN Counter Lach

1. OUTLINE

This fuacilon is ysed for judelac the process liming by knowint where the scaning is approximately on the screan line at ceriata lining.
2. FUNCTION

This fuctlon sels verlical and horlaonial counter value al ceriain limise (when refister (2is7h) is read), and kaom where the raster is on the screan by readiat the resister value.
(The scaning syachtonizes wlith laner verlleal and horlzonial corincer.)
3. SETTING EXAMPLE

```
- Read reglater <2137H) : (counler litch)
- Read reflsier <213f月>
    (|n|l|a|se register <213CH).<2130|l>
                            In lhe ofder of lon and HIth)
- Read reslsier <213CH>.<213DH)
```


812 Offst CHABCE

1. OUTLIRE

The horlzonial and verilcal scroll (offsel) value can be performed every horizonial 8 -dol (characler unil) in mode 2,4 and 6.
The other part of the screen can be brought lin the middie of the frame in order lo have the effect llke aladow, and aiso. a verileai partial scroll can be wade.
2. FUNCTION

This function can be selected whether bolh BG-l and 2 . or elther $8 G-i$ or 2 are applicabie. The offset for boln $l l$ and y can be changed al every character unit on mode-2 and 6 . but the offsel for elther il or V cin be changed on mode- -4 .
The same offsel will be performed on each llae. once the offsel data for a horizontal line (32-characters) is sel.
In case of selting life other offset ralue depending on the scaning line. the offsel can be changed by changing - BC-3 SC Offset Address" or -8G-3 SC Base Address duriat the H-DMA period.
3. SETtING EXAmple

§ 13 JOY Compoller

1. outline

The swltch stalus of the joy controller can be read automatleally serlally. and it will be converted to the parallel data.
It is not necessary to read the swltch status one by one like the Famlly Computer and convert them to the parallet dala every lame.
2. FUNCTION

2 pcs of the Joy controller can be connected to the man unit. (4 pes of the Joy controller can be connected by using the expanded connector.)
l-blt data ls assigned to each swltch. and the lumber of hits to be read automatically for one joy Controlter is un to lobit. For the expanded bit. the blt which is cxpanded can be read l-bit by 1-bll by the software llke the famlly computer.
The hardware operates for reading the data for aboul 215 as right after the V -Blank flas is set or the NNI Is applled, Therefore. please note that the reglster of the Joy Controller can not be read properly.
\& 215 (214.55) us 1 s equivalent 10 3.4 (3.38) scalling lines. Whlch is 2 perlod of 580 (576) Byte to be iransfered by the DNA. (In case the CPU clock is 2.68Mila. It is equivalent to 580 machlne cycle.)
as soon as the v-Blank starts.
It is considered as the basic flow to perform the general purpose dMa.
Therefore, it is convenient if lotal number of bjite to be transfered by the general purpose dMA is used as a read liaing. [Please refer to the System flowchari]
\dot{H} The joy Controller data (register) should be read after conflrming that joy-C Enable of the reglster 〈4212H〉 is nol set durlas the $\begin{aligned} & \text {-blank perlod. so that the valld data can be }\end{aligned}$ read.

* After $18 \mu s$ (32 machine cycle with $2.68 N 11 z$) from the beinang of the•- B lank. the hardware will starl to read. The - joy-C Enable of the reglster (4212ll) can not be set during thls perlod.

3. SETTING EXAMPLE

\$14 PROGRABBLE I/O PORT

1. OUTLINE

8-8it propramabie $1 / 0$ port is proyided to interface to peripheral derices. Which are the keyboard. the 3 D -glass and elc.
2. HOW TO USE
" 1^{-}should be wrilten 10 regisier $\langle 4200 \mathrm{H}$) for the bil lo be used as the in-port.
The bil becomes the in-porl and it can be read by register <42l3H). The dala should be wrilicn 10 regisier <4201li> for the bil to be used as the out-port. This wrilten data can be oulput directiy.

\$15 ABSOLUTE MULTIPLCATION/DIFIDE

1. outline

The absolute aultipllcation ($8-b i t x 8-b l t)$ and the absolute diyide (16-bltx 8-blt) can be done using thls functlon.
It is also convenlent for the array lable processing. and litan Improve the processing speed for the aliliplication and the divide.
2. FUNCTION

The wultiplication calculation between the williolicand of 8-bit absolute value $(0 \sim 255)$ and the wultiplicallon of 8-bll absolute value ($0 \sim 255$) can be perforaed, and can get the resuil of $16-\operatorname{lit}$ product ($0 \sim 65025$).
Or. the divide calculation between the dividend of fobit absolute
vaiue ($0 \sim 65535$) and the diylsor of $8-b l t$ absolute ralue (0 ~255)
can be performed, and can get the result of lo-blt quotient
(0 ~65535) and 16-bil remalnder.
If the divisor is ${ }^{\circ} 0^{\circ}$ in the divide calculation. the quotleil value becomes 65535 (OFFFFli) and the remalnder becomes the dividend value.
so lliat caution is required.
It lakes about 8 machine cycie for the multipllcatlon calculation and about la achlne cycle for the divide calculallon.
The reglster value for multipllcand and dividend wlll not be destrojed even after operatlon.
3. SETTING EXAMPLE

```
* In case of Mulilpllcallon:
    - Set register <4202H>
        *Mulllpilcand-A" Seltlnes
    - Set reglster <4203H>
        *Multimller-B" Settings
    - Nall for 8 Machine cycle
    - Read register <4216H\rangle.\langle4217H>
                Read Product-C
* In case of Olvide:
        - Sel reglster <4204|>. ($2051l>
        "Divldend-C" Settlngs
    - Set reglsier <4206H>
                "Divisor-B" Seltlngs
            - Nizlt for 16 Machlne Cycle
            - Read reglster <4214H>.<4215|i>
                Read Ouollent-C
            - Read rerlster <4216|l>.<421ill>
                Read Remalnder
```


816 h/V coult tiuce

1. OUTLINE

The SfX has the timet syachronitint with the disolay on the tV screen. which is used for adysting the lialig of the scanning on the screen and the software process.
2. FUNCTION

Thls function can generate the lnterfipl elther al any V-posilion or H-posilion of the seaning lines. il can also cenerate the laterrupl al any oosition of the scanalng llae.
3. SETTING EXANPLE

§ 17 OHA (DIRCCT UELIOXY ACCESSS)

The DMA is the method to tranfer the data as sae as the datar transfer which ls done by the CPU. Howerer. the DMA can transfer the data at high speed by usiag the hardware instead of the CPU.
Espectally, the Sfx has the exclusiye DHA, slace the picture dala has to be transfered rapldy.
The DMA for the SfX is to transfer the data between "A-bus adoress" in the CPU (0000000~Offffff) and "B-Bus address" in the S-PPU (0002100 ~00021ff). Which has 8-channels in total.
There are two kinds of the olla. Which tre the general purpose dila and the H-DMA, and elther of the lwo can be set at each channei.
The data can be transfered betwea the asme dMAs la the order from the lower channel number ($0 \sim 7$). And the $H-D M A$ can interrupt eren during the transfer by the general pyrpose oma. which means that the lloma has higher priority than the general purpose dHA.
furthermore. the CPU process stops aytoatically during the dMA period. and wlll start againafter the oms is completed. Therefore. It is not necessary to observe the DMA completion by the CPU.

817.1 GEHERAL PURPOSE DVA

1．outline
This funclion can transfer the dala rapidiy between 2 types of menory devices．Which is memory which can be accessed directiy by the CPU．such as a ROM on the game cartridge．and memory which has to be accessed throush the s－ppu．such as the V－RAN．

2．FUNCTION
The axiluaf area of the A－Bus address which can be used in one channel is ilmited in one bank（ 65.536 Byte）．
Therefore， \ln case of spreading over more than 2 banks．
it is necessary to use more tian 2 chanatis or transfer iwice．
One A－bus address basically is increascacery lime t－byle dala is transfered．Howerer．it can be decreased or fixed depending on life sellings（＂O3＂and ${ }^{\circ} \mathrm{D} 4^{*}$ of reglsice 《43x0ili）．
The following lable shows 4 ways of the B－Bus address changes．

Lransfer Word Seiect －of Transfer＜43x0ii＞ （\＃of Byle）	0 or 2	1	3	4
0	B	B	B	B
1	B	$B+1$	B	$B+1$
2	B	B	$B+1$	$B+2$
3	B	$B+1$	$B \div 1$	$B+3$
4	B	B	B	B
5	B	$B+1$ \vdots \vdots	B	$B+1$ \cdot \cdot \cdot

NOTE ：Beans the data of rezister 〈43X1H〉．
H In case of 22A－1Incs．lite eneral purdose DMA can transfer or－byte data maxinum during f －BlaNR perlod．
3. SETTING EXAMPLE

817.2 H-DHA

1. OUTLINE

This is the special dwa. which can transfer the dala automatically synchronizing will the fl-blank. Therefore. the s-ppu setings can be varied by each lorizontal scannint line. and also. special effects can be added to the pleture.
2. FUNCTION

This function basleally transfers the dala from the A-Bus memory (CPU memory) 10 life S-Plu resister.
There are two kinds of the aduresslng modes on the A-Bus sile. absolute aduressing and lidirect addresslin. which can lie sel by each channel.
Tliere are two kinds of lhe dala transfer. one is to transfer a sel of data each horlzoulal blank perlod. aud the other is to lransfer a set of data crery certaln unaber of lhe horlzontal litanks. These lwo melliods can bolh be used in the data lable for one screan (one fleld). therefore. necessary data can lie transfered each necessary scanalng line for one screen lane field:.
Tlie B-bus address can be clianged flie tiays according lo the table shown below.

NOTE : B means the dala of resister \{adill).

3. SETTING EXAMPLE

§ 18 INTERLACE

1. BG MODE $0 \sim 4$ \& 7

When * 1^{*} is writien $10^{\circ} D 0^{*}$ of register <213311>. Lhe picture which is outpul from the $S F X$ will be the interlace sisnal.
Therefore. in casc of $B G$ mode 0 lhrough 4 and i. the same picture will be displayed untess the picture data is chanced between the 1 st field and the 2nd field. (Sce ppu aprendis-18)
2. $B G$ MODE 5 \& 6

In case of the interlace on $B G$ mode 5 and G. the rertical resolution will be doubled in appearance. because a picture is displayed by using one frame of the combination of the lst field and the 2nd field. (Sce Appendix-10)
3. UBJ
 resolution will be doubled as same as the case abore because a picture is generaled by one frame. Honerer. the range of the V-position is 0 through 255 . and il will nol be doubled.

819 H－512 HOOC（B6 HOOE 5 66$)$

1．MAIN SCREEN \＆SUB SCREEN SETTINGS
The screen addition／subtraction should nol be used．because a part of both main screen and sub screen function are used in this mode． Therefore．for the case excepl the color constanl addilion
〈21301l〉 and lhe sub switch should be＂OFF＂． Also．in this mode．lhe same data should be frittentoregisters〈212011〉〈212E\｜〉 and＜212F\｜〉，and Through＂should be the same for bolll life main and the sub screen．

2．FIXCD COLOR ADIITION／SUBTRACTION
＂DO～D5＂of the register 〈2l31月〉 is lhe flag witich can select the main screen for addition／subtraction．
Ry the reason described abore．this selection can not be done． It is necessary lowile＂l＂lo lhesc fiags ido～Des）when the color constall addition／sublraction is performed． The remaining seltings are the same as the other mode onfage is． llowever．ill case of the color willdow function．there will be additionisuluraction cuery $2-d o l$ unit liorizoulally，because the window has only 256 posilions horizontally．

3．DISPLAY NITII OBJ
As the lame of ll－5i2 mode implies．it indicates life jit liorizontal resolutlon for BG．But．Lhe horizontal resolution for lie obj is only 25G－dol regardless of the bG mode． However，Ihe priority order for $8 G$ is delermined by erery dot．

4．OTIIERS
See dopendix－19 for delails

820 OBJ 33'S LINES OVER \& PriORITYY ORDER

1. $33^{\circ} \mathrm{s}$ RANGE OVER

The number of 0 bJ which can be displayed in a horizontal linc is limited. One of its limitalion is called the " $33^{\circ} \mathrm{s}$ Range orer". This ls the limilalion that objs (33 or more) can not be displayed in a horizonial line regardiess of the obj size.
If lae " $33^{\circ} \mathrm{s}$ Range Orer is occured in one field (al least one line).
"DG" of the register will be set.
For the line which this " 33° s Range Orer" is occured. only 32 obss can be displayed oul of more llan 33 OBJs according to the prlorily order (selected (rom smaller obj number).

NOTE: "the number of displayed obj" counts the obj hiduen by BG: window or ollier OBJs.

NOTE : If ll-position i.s minus. and lhe OBJ is not displayed on the screen area lo be displajed (located on the left of the left the screcn lo be displayed). " lhe number of lhe displayed OBJ" does nol count them.
2. 35° S TIME OVER

The other limilation on one horizontal line is lhe "3j"s lime orer".
This is the limitation that obl character size is conterted to character size (8-dot x - -dol) and OBJs (35 or more) can nol be displayed
If the " $35^{\circ} \mathrm{s}$ Time over" has occured in one fiela (al least one line. " 07 " of the register 〈2l3Ell will be set.
In the Ilne which this " 35° s Time Over" has occured. only. 32 OBJs
oul of "The OBJ which should be displayed" can be displayed according to the priorits order (selected from lareer Obl llumberl. The other limilation on one horizontal line is lhe 35 lime over". This limit is due to a concersion limit of less than sjubls © 8 8) displayed per horizontal line.
"The UBJ which should be displayed" means less than 33 OBJs which satisfy the disnlay condition explained in " 33^{\prime} s Range over" above.

NOTE : There are characters (8-dol x-dol) which are not displayed on the display area depending on 0 bl size and nosilion. But lhey are nol included in this limilalion set or less:.
3. PRIORITY ORDER SIIIFTING

As mentioned above. Iiailed nuabers of the UBJs can be displased in a line and are relaled to the priority order. li is desirable lo develop a game within this limilation. llowever. more 0BJs beyond this limitation somelimes need lo be displayed. In this case. there is the way to display more OBJs imagiarily on one line. The priorily order which is changed every frame is one of the methods. Also. there is another melliod. which changes the obj data oruer by programming. The SFX also has lie function lo rotale the priority order of 128 obls.
Hlen using these methods. please consider llat llie llbj will flash every frame unil, and lle priorils order among objs will change. The selling melhod is as follows:
(1) display the OBJ.

(3) Write the lighest uriority obj number (0~12T: 10
 every frame.
(4) repeat (3)

When OBJ uumber storing al (3) is "n"

obj number	PRIORITY ORDER
O B J 0	$129-n$
.	
O B J $11-1$	128
OBJ 11	1
OBJn $\quad 1$	2
$\stackrel{ }{\bullet}$	-
O B J 127	$128-n$

$\$ 21$ CPU CLOCK 4 AODRESS MAP

1. CPUCLOCK

The CPU clock can be suilched automalically depeading oulhe address to be accessed by the CPU.
There are 3 kinds of clock speed. which are 3. 58 Millz, 2. 68 Mlllz. 1. T9Mllz.
and lhey can be used according lo lhe device specd (ROM. RAM. LSI
and elc.).
If the ROM and RAM of middle speed (access lime less (han 200 ns) are used in lhe cartridge. il will be mapped lo life aditress area
(2.68씨I). If high speed (access lime less than t20ns) are used.
il will be mapped to the address area (3.58Nllz).
(Al present (as of January, lo89), because most of the kon and the
Kan used in the video games are designed for more lian lions speed. 2. 68mllz clock is used as lhe stalldard.
 hetween the address and the clock.
Two clocks (2.68Mllz \& 3.58Mllz) call be selected lus seltillt "do or
 And 2. 68Mllz is set as defaull.
The CPU is operaled internally will 3.58 millz clock speed.
\{regardess of lhe address. Ihe Dald will be uperated with 2.68 mill clock speed.]
2. ADDRESS MAP

Please refer 10 life "Frequencs \& Address dapping".
The $\|$ RAM ($8 \mathrm{~K}-\mathrm{By}(\mathrm{c})$ is mapped 10 the address ($0000 \sim 1 F F F$) of the bank ($00 \sim 3 F$). ($80 \sim B f$) and $T E$.
Because this is the fran used as common bank. this 8 - byle call be accessed from any bank described above.
Also. the $\mathbb{I} R A M(24 K-B y l e)$ is mapped 10 lhe address (2000~ iffF;
 in lhe SFX unil. The address (8000~FFFF) of llae bank TE and the address (0000~FFFF! of the bank if are provided as extra area for expanded llram.
Also. Ihe address "2000~5FFF" of the bank"no~3F"and" $80 \sim$ BF* are resereed as a register area of the S-PPU. UNA. elc.
also. because this basically is rescried as a common bank area. lhe S-PPL and life dila register can be accessed fromany bank.

 (XNVU) $91 V \sim$ EZV

§ 22 HarDMARE CONFIGURATIO*

§22.1 NAME \& FUNCTIUN

SPPU, PPU1. This is a Piclare Processing linil for Sf. This is equiralenl lo the Sfl's hands or leas. which generales rarious piclures accoruing to the control from the cpl and has the functitu to rary image expressioll.

SOLND UNIT (APL; This is a Audio Processing Linit.
This is equiralent lo lhe SFX's moulh. which generales produces necessary music or sound effect for the fame and has llie functicn lo rary sound expression.

§23 SYSTEMFLOWCHART

(Clear each Register) (See P44)

Main Register Seltilles)

- Sel eacll "base dudress*

- Set "ObJ Size Select" \& "ObJ Name Select"

Register (2101H). <210511>. <210ill>~<210All)

```
- througil maln settincs
```

REGISTER 〈212C\|>

NOTE : The function to set the OAM address automatically will not work during forced Blank period.

[^0]

824 PROCRAHIHIIG WARYIICS

－There are registers（＜2100\｜）～〈2114\｜＞．〈211B\｜＞～〈2120\｜？），which．must be accessed in the order of low and llightwice． If the unater of accessing llae register（wite lifice or read firice： becomes unknown．nlease initialize as follows：

0am．CGRAM．VRAM …．．．．．．．．．．．．．．．．．Sel lhe address agaln
Oller Registers（IXrite）．．．．．．．The lorer data should le wrilten more than one time．anc llie higher data should be wrilten．
ll＇f Counter Read ．．．．．．．．．．．．．．．．．．．．When reading tlie jCis status register〈213fll〉 ia will be inilializtd． The data should be read in lhe order of Low and lligh．
－The beriod which can be acessed for lhe register is as follows：
V－RAM．UAMt …．．．．．．．．．．．．．．．．．．．．．．．．．．．．forced Blank or V－Blank period only
CG－RAM …．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Furced Blank．F－Blank or $\|$－Blank period unly
Other Register（＊rite）．．．．．．．All period sllowerer．when writling the data．llip picture may not be displayed properly．
Olher Register（Read）．．．．．．．．．．．．All period（llowerer．the data which may be changed during display period may not be read properly．．：
－The address space for the l－RAM is oti－word（b－word＝10－bit：maximum． 32 K －rord memory is linslalled in the Sfl unlt．
－Hlien lite V－RAll is accessed from the CPU．llie address counter will be increased automallcally． Fur the l－Ran increacil mude，nlease nse the reeister mode desigmated by the instructiou．
－\｜lien the f－Ram is read continuously arter the f－Rad address has been set．Lhe address will nol be increased for life firsi data only． Therefore．wlien realing the data continuously．life first data for lhe address increment should be read as a dummy data after life l－Rall aduress lias been sel．
－The iod color dala of each CG color dala dalette is transparencs． Because lle transarency is a color which is nol disilayed．so lial ally color can be set． llowerer．the color data of the c．G address（0oll：is lormally black （backeround）．
－Even though 9－bil is prorided as lle 0an ll－position．the ialue loon： must not be used．

§ 24 REGISTER CLEAR (IRITIAL SETTIMGS)

```
[Because this is a recommended settings for beginners. il is not
necessary to perform according to this way.
llowever. the register status is not stable when power is lurned on.
inilial settings must be done.l
```

ADDRESS(IIEX)	DATA(IIEX)	ADDRESS(HEX!	DATA(IEN)
$<2100\rangle$	8 F (Forced Blank)	$\langle 2.120\rangle$	0000
$\therefore 2101 \geqslant$	00	$<2121 \geqslant$	00
$\because 2102>$	00	$<2122>$	(CG UATA)
$\because 2103>$	00	$\bigcirc 2123 \%$	00
$<2104>$	(OAM UATA)	$\leqslant 2124>$	00
$\therefore 2105>$	00	$\bigcirc 2125 \%$	00
$<2100>$	00	$<2120>$	00
$<2107\rangle$	00	$<2127>$	00
$<2108>$	00	$\langle 2128\rangle$	00
$\therefore 21002$	00	$\therefore 2120 \%$	00
$\because 210 A>$	00	$\therefore 212 \mathrm{~A}$	00
$\langle 210 \mathrm{~B}\rangle$	00	$\langle 212 \mathrm{~B}\rangle$	00
$\therefore 210 \mathrm{C}=$	00	$<212 \mathrm{C}$	00
	(LUW) (HIGI)	$<212 \mathrm{D}$	00
<210 D	0000	$<212 \mathrm{E}$	00
$<210 \mathrm{E}\rangle$	0000	$<2130>$	30
$\langle 210 \mathrm{~F}\rangle$	0000	$<2131>$	00
$<2110\rangle$	0000	$<2132>$	E 0
$<2111 \times$	0000	$<2 \begin{array}{llll} \\ 2 & 1 & 3 & 3\end{array}>$	00
$<2112>$	0000	$<4200 \geqslant$	00
$<2113>$	00000	$<\downarrow 201=$	FF
$<2114>$	0000	$<4202>$	00
$\therefore 211103$	80	$\because 4203 \geqslant$	00
$\because 2110>$	00	$\div 4204$.	00
$\because 2117 \geqslant$	00	$<4205 \geqslant$	10
$\therefore 2118>$	(YRAM DATA!	$\because 4200 \%$	00
$\because 2110 \geqslant$	(VRAN DATA)	$\because 420 \div$	00
$\because 11 \therefore>$	(1) 0	$\therefore 4 \geq 08 .$.	00
$\therefore 211 \mathrm{~B}>$	00001	<42 U 0 》	00
$\therefore 211 \mathrm{C}>$	0000	$<\downarrow 20 A>$	0 O
$\langle 211 D\rangle$	0000	$\because 20 \mathrm{~B}$ -	00
$\therefore 2 \mathrm{i}$ l E $>$	00001	$\therefore+20 \mathrm{C}:$	00
$\because 211 F>$	0000	$<+20 \mathrm{D}$ -	00

SFX DOCUMENTATION BROUGHT TO YOU BY OPTIROC OF MEGABOYS

[^0]:

 - Sormatiy wrifies ooll" 10 register
 <210211>く210311>
 - Set CG Rall iddress Normall; write "OOll" to register <2l? Ill?

